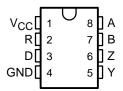
- Meet or Exceed the Requirements of ANSI Standards EIA/TIA-422-B, RS-485 and ITU Recommendation V.11
- Bus Voltage Range . . . –7 V to 12 V
- Positive- and Negative-Current Limiting
- Driver Output Capability . . . 60 mA Max
- Driver Thermal-Shutdown Protection
- Receiver Input Impedance . . . 12 kΩ Min
- Receiver Input Sensitivity . . . ±200 mV
- Receiver Input Hysteresis . . . 50 mV Typ
- Operate From Single 5-V Supply
- Low Power Requirements


description

The SN75179B is a differential driver and receiver pair are monolithic integrated devices designed for balanced transmission-line applications and meet ANSI Standards EIA/TIA-422-B and RS-485 and ITU Recommendation V.11. They are designed to improve the performance of full-duplex data communications over long bus lines.

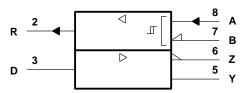
The SN75179B driver output provides limiting for both positive and negative currents. The receiver features high input impedance, input hysteresis for increased noise immunity, and input sensitivity of ± 200 mV over a common-mode input voltage range of -7 V to 12 V. The driver provides thermal shutdown for protection from line fault conditions. Thermal shutdown is designed to occur at a junction temperature of approximately 150°C. The SN75179B is designed to drive current loads of up to 60 mA maximum.

The SN75179B is characterized for operation from 0°C to 70°C .

D OR P PACKAGE (TOP VIEW)

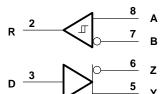
Function Tables

DRIVER

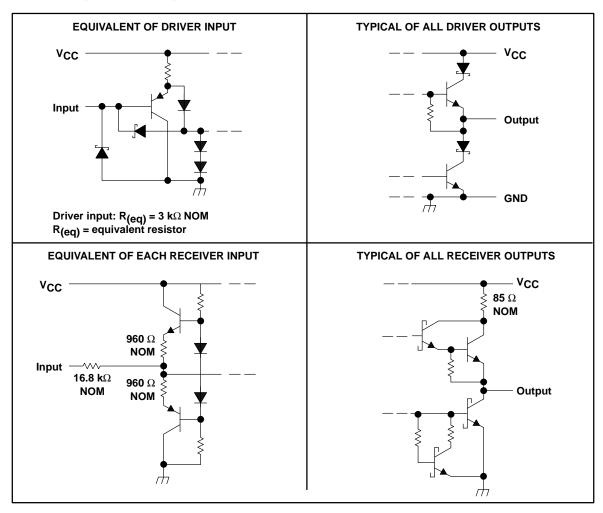

INPUT	OUTPUTS				
D	Y Z				
Н	Н	Г			
L	L	Н			

RECEIVER

DIFFERENTIAL INPUTS	OUTPUT
A – B	R
V _{ID} ≥ 0.2 V	Н
$-0.2 \text{ V} < \text{V}_{\text{ID}} < 0.2 \text{ V}$?
$V_{ID} \le -0.2 V$	L
Open	?


H = high level, L = low level, ? = indeterminate

logic symbol†


† This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

logic diagram (positive logic)

schematics of inputs and outputs

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)†

Supply voltage, V _{CC} (see Note 1)	7 V
Voltage range at any bus terminal	
Differential input voltage, V _{ID} (see Note 2)	±25 V
Continuous total dissipation	. See Dissipation Rating Table
Operating free-air temperature range, T _A	0°C to 70°C
Storage temperature range, T _{stq}	65°C to 150°C
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential input voltage, are with respect to network ground terminal.
 - 2. Differential input voltage is measured at the noninverting input with respect to the corresponding inverting input.

SN75179B DIFFERENTIAL DRIVER AND RECEIVER PAIRS

SLLS003D - OCTOBER 1985 - REVISED MAY 1995

DISSIPATION RATING TABLE

PACKAGE	TA ≤ 25°C POWER RATING	DERATING FACTOR	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING
D	725 mW	5.8 mW/°C	464 mW	377 mW
Р	1000 mW	8.0 mW/°C	640 mW	520 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.75	5	5.25	V
High-level input voltage, VIH	Driver	2			V
Low-level input voltage, V _{IL}	Driver			0.8	V
Common-mode input voltage, V _{IC}		- 7 [†]		12	V
Differential input voltage, V _{ID}				±12	V
High-level output current, IOH	Driver			-60	mA
	Receiver			-400	μΑ
Laurence and and an extra summand the	Driver			60	A
Low-level output current, IOL	Receiver			8	mA
Operating free-air temperature, TA	<u>.</u>	0		70	°C

[†] The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage.

DRIVER SECTION

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST CO	TEST CONDITIONS		TYP†	MAX	UNIT
VIK	Input clamp voltage	I _I = -18 mA				-1.5	V
VO	Output voltage	IO = 0		0		6	V
v _{OD1}	Differential output voltage	IO = 0		1.5		6	V
Iv _{OD2} I	Differential output voltage	$R_L = 100 \Omega$,	See Figure 1	1/2V _{OD1} or 2 [‡]			V
		R _L = 54 Ω,	See Figure 1	1.5	2.5	5	V
V _{OD3}	Differential output voltage	See Note 3		1.5		5	V
△ V _{OD} I	Change in magnitude of common-mode output voltage§					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega \text{ or } 100 \Omega,$	See Figure 1			3 -1	V
△Vocl	Change in magnitude of common-mode output voltage§					±0.2	V
IO	Output current	$V_{CC} = 0$,	$V_0 = -7 \text{ V to } 12 \text{ V}$			±100	μΑ
lН	High-level input current	V _I = 2.4 V				20	μΑ
I _I L	Low-level input current	V _I = 0.4 V				-200	μΑ
laa	Short-circuit output current	$V_O = -7 V$				-250	mΑ
los		$V_O = V_{CC}$ or 12 V				250	IIIA
Icc	Supply current (total package)	No load			57	70	mA

NOTE 3: See ANSI Standard RS-485, Figure 3.5, Test Termination Measurement 2.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
td(OD)	Differential output delay time	R _L = 54 Ω,	See Figure 3		15	22	ns
t _t (OD)	Differential output transition time				20	30	ns

Symbol Equivalents

DATA SHEET PARAMETER	EIA/TIA-422-B	RS-485
Vo	V _{oa} , V _{ob}	V _{oa} , V _{ob}
VOD1	Vo	Vo
V _{OD2}	$V_t (R_L = 100 \Omega)$	$V_t (R_L = 54 \Omega)$
V _{OD3}		V _t (Test Termination Measurement 2)
Δ V _{OD}	$ V_t - \overline{V}_t $	$ V_t - \overline{V}_t $
Voc	V _{os}	V _{os}
Δ VOC	$ V_{OS} - \overline{V}_{OS} $	$ V_{OS} - \overline{V}_{OS} $
los	$ I_{sa} , I_{sb} $	
Io	$ I_{xa} , I_{xb} $	lia, lib

[†] All typical values are at V_{CC} = 5 V and T_A = 25°C. ‡ The minimum V_{OD2} with 100- Ω load is either 1/2 V_{OD2} or 2 V, whichever is greater.

[§] Δ|V_{OD}| and Δ|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input changes from a high level to a low

SLLS003D - OCTOBER 1985 - REVISED MAY 1995

RECEIVER SECTION

electrical characteristics over recommended ranges of common-mode input voltage, supply voltage, and operating free-air temperature (unless otherwise noted)

	PARAMETER	TE	ST CONDITIONS		MIN	TYP†	MAX	UNIT
VIT+	Positive-going input threshold voltage	$V_0 = 2.7 V$,	$I_0 = -0.4 \text{ mA}$				0.2	V
VIT-	Negative-going input threshold voltage	$V_0 = 0.5 V$,	IO = 8 mA		-0.2‡			V
V _{hys}	Hysteresis voltage (V _{IT+} - V _{IT-})					50		mV
Vон	High-level output voltage	$V_{ID} = 200 \text{ mV},$	$I_{OH} = -400 \mu A$	See Figure 2	2.7			V
VOL	Low-level output voltage	$V_{ID} = -200 \text{ mV},$	$I_{OL} = 8 \text{ mA},$	See Figure 2			0.45	V
1.	Line input current	Other input at 0 V,	See Note 4	V _I = 12 V			1	mA
'1	Line input current	Other input at 0 v,	See Note 4	V _I = −7 V			-0.8	IIIA
rį	Input resistance				12			kΩ
los	Short-circuit output current				-15		-85	mA
ICC	Supply current (total package)	No load				57	70	mA

[†] All typical values are at $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

NOTE 4: Refer to ANSI Standard EIA/TIA-422-B for exact conditions.

switching characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
tPLH	Propagation delay time, low- to high-level output	$V_{ID} = -1.5 \text{ V to } 1.5 \text{ V},$		19	35	ns
t _{PHL}	Propagation delay time, high- to low-level output	C _L = 15 pF, See Figure 4		30	40	ns

[‡] The algebraic convention, where the less-positive (more-negative) limit is designated minimum, is used in this data sheet for common-mode input voltage and threshold voltage levels only.

PARAMETER MEASUREMENT INFORMATION

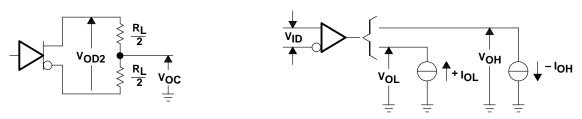


Figure 1. Driver V_{DD} and V_{OC}

Figure 2. Receiver VOH and VOL

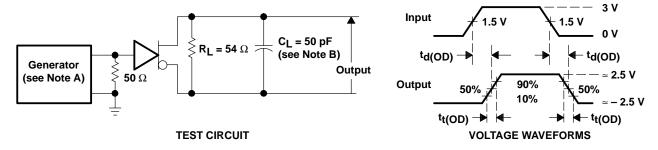


Figure 3. Driver Test Circuit and Voltage Waveforms

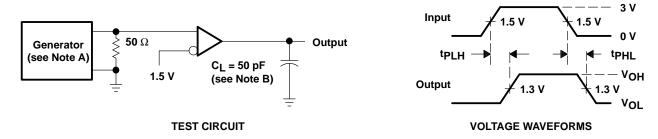
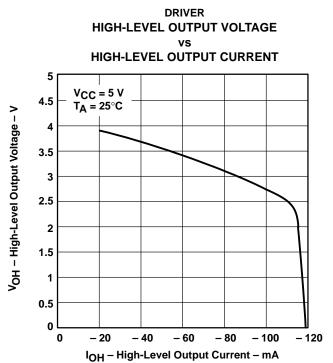



Figure 4. Receiver Test Circuit and Voltage Waveforms

NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, 50% duty cycle, $t_{\text{f}} \leq$ 6 ns, $t_{\text{f}} \leq$ 6 ns, $t_{\text{O}} =$ 50 $t_{\text{C}} =$

B. C_L includes probe and jig capacitance.

TYPICAL CHARACTERISTICS

_. _

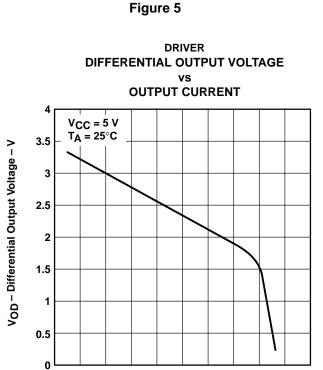


Figure 7

40 50 60 70

IO - Output Current - mA

10 20 30

DRIVER LOW-LEVEL OUTPUT VOLTAGE vs LOW-LEVEL OUTPUT CURRENT

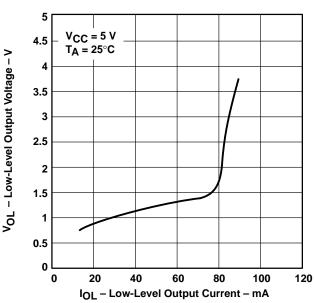


Figure 6

RECEIVER OUTPUT VOLTAGE VS DIFFERENTIAL INPUT VOLTAGE

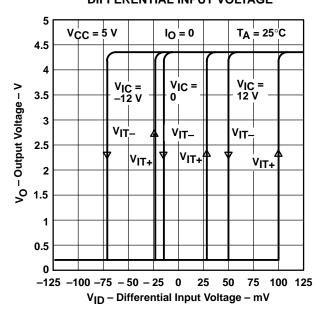


Figure 8

80 90 100

TYPICAL CHARACTERISTICS

HIGH-LEVEL OUTPUT VOLTAGE HIGH-LEVEL OUTPUT CURRENT 5 $V_{ID} = 0.2 V$ T_A = 25°C 4.5 V_{OH} - High-Level Output Voltage - V 3.5 3 V_{CC} = 5.25 V 2.5 $V_{CC} = 5 V$ 2 1.5 V_{CC} = 4.75 V 1 0.5 0 -5 -10 -15 -20 -25 -30 -35 -40 -45 -500

Figure 9

IOH - High-Level Output Current - mA

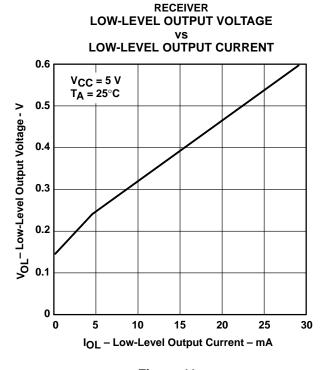


Figure 11

HIGH-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

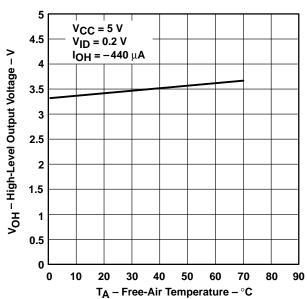


Figure 10

RECEIVER LOW-LEVEL OUTPUT VOLTAGE vs FREE-AIR TEMPERATURE

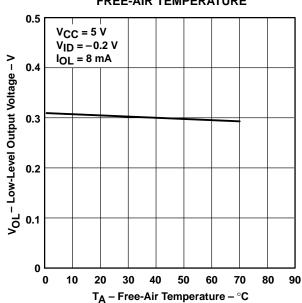


Figure 12

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or severe property or environmental damage ("Critical Applications").

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI products in such applications requires the written approval of an appropriate TI officer. Questions concerning potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer's applications, adequate design and operating safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or infringement of patents or services described herein. Nor does TI warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1995, Texas Instruments Incorporated